Skip to article frontmatterSkip to article content

OLCI Level 1B Reduced Resolution - Sentinel-3

This notebook demonstrates how to search and access Sentinel-3 data using HDA and how to read and visualize it using satpy.

🚀 Launch in JupyterHub

Documentation DestinE Data Lake HDA

OLCI Level 1B Reduced Resolution - Sentinel-3

How to access and visualize OLCI Level 1B Reduced Resolution - Sentinel-3

This notebook demonstrates how to search and access Sentinel-3 data using HDA and how to read and visualize it using satpy

Throughout this notebook, you will learn:

  1. Authenticate: How to authenticate for searching and access DEDL collections.

  2. Search OLCI data: How to search DEDL data using datetime and bbox filters.

  3. Download OLCI data: How to download DEDL data through HDA.

  4. Read and visualize OLCI data: How to load process and visualize OlCI data using Satpy.

Prerequisites:
  • For filtering data inside collections : DestinE user account

  • Authenticate

    We start off by importing the relevant modules for DestnE authentication, HTTP requests, json handling. Then we authenticate in DestinE.

    import destinelab as deauth
    import requests
    import json
    import os
    from getpass import getpass
    DESP_USERNAME = input("Please input your DESP username or email: ")
    DESP_PASSWORD = getpass("Please input your DESP password: ")
    
    auth = deauth.AuthHandler(DESP_USERNAME, DESP_PASSWORD)
    access_token = auth.get_token()
    if access_token is not None:
        print("DEDL/DESP Access Token Obtained Successfully")
    else:
        print("Failed to Obtain DEDL/DESP Access Token")
    
    auth_headers = {"Authorization": f"Bearer {access_token}"}
    Please input your DESP username or email:  eum-dedl-user
    Please input your DESP password:  ········
    
    Response code: 200
    DEDL/DESP Access Token Obtained Successfully
    

    Once authenticated, we search a product matching our filters.

    For this example, we search data for the OLCI Level 1B Reduced Resolution - Sentinel-3 dataset.

    The corresponding collection ID in HDA for this dataset is: EO.EUM.DAT.SENTINEL-3.OL_1_ERR___.

    response = requests.post("https://hda.data.destination-earth.eu/stac/search", headers=auth_headers, json={
        "collections": ["EO.EUM.DAT.SENTINEL-3.OL_1_ERR___"],
        "datetime": "2024-06-25T00:00:00Z/2024-06-30T00:00:00Z",
        "bbox":  [10,53,30,66]
    })
    if(response.status_code!= 200):
        (print(response.text))
    response.raise_for_status()

    We can have a look at the metadata of the first products returned by the search.

    from IPython.display import JSON
    
    product = response.json()["features"][0]
    JSON(product)
    Loading...

    Download

    The product metadata contains the link to download it. We can use that link to download the selected product. In this case we download the first product returned by our search.

    from tqdm import tqdm
    import time
    
    assets = ["downloadLink"]
    
    for asset in assets:
        download_url = product["assets"][asset]["href"]
        print(download_url)
        filename = product["id"]
        print(filename)
        response = requests.get(download_url, headers=auth_headers)
        total_size = int(response.headers.get("content-length", 0))
    
        print(f"downloading {filename}")
    
        with tqdm(total=total_size, unit="B", unit_scale=True) as progress_bar:
            with open(filename, 'wb') as f:
                for data in response.iter_content(1024):
                    progress_bar.update(len(data))
                    f.write(data)
    https://hda.data.destination-earth.eu/stac/collections/EO.EUM.DAT.SENTINEL-3.OL_1_ERR___/items/S3B_OL_1_ERR____20240625T083313_20240625T091737_20240625T110705_2664_094_278______PS2_O_NR_004/download?provider=dedl
    S3B_OL_1_ERR____20240625T083313_20240625T091737_20240625T110705_2664_094_278______PS2_O_NR_004
    downloading S3B_OL_1_ERR____20240625T083313_20240625T091737_20240625T110705_2664_094_278______PS2_O_NR_004
    
    925MB [00:01, 588MB/s] 
    

    Unfold the product

    del response
    import os
    import zipfile
    
    zf=zipfile.ZipFile(filename)
    with zipfile.ZipFile(filename, 'r') as zip_ref:
        zip_ref.extractall('.')

    Read and visualize OLCI data using Satpy

    The Python package satpy supports reading and loading data from many input files.

    Below the installation and import of useful modules and packages.

    pip install --quiet satpy pyspectral
    Note: you may need to restart the kernel to use updated packages.
    
    from datetime import datetime
    from satpy import find_files_and_readers
    from satpy.scene import Scene
    from satpy.composites import GenericCompositor
    from satpy.writers import to_image
    from satpy.resample import get_area_def
    from satpy import available_readers
    
    import pyresample
    import pyspectral
    
    import warnings
    warnings.filterwarnings("ignore")
    warnings.simplefilter(action = "ignore", category = RuntimeWarning)

    Read data

    We can read the downloaded data using the “olci_l1b” satpy reader

    
    
    files = find_files_and_readers(sensor="olci",
                                   start_time=datetime(2024, 6, 25, 0, 0),
                                   end_time=datetime(2024, 6, 30, 0, 0),
                                   base_dir=".",
                                   reader="olci_l1b")
    
    scn = Scene(filenames=files)
    # print available datasets
    scn.available_dataset_names()
    ['Oa01', 'Oa02', 'Oa03', 'Oa04', 'Oa05', 'Oa06', 'Oa07', 'Oa08', 'Oa09', 'Oa10', 'Oa11', 'Oa12', 'Oa13', 'Oa14', 'Oa15', 'Oa16', 'Oa17', 'Oa18', 'Oa19', 'Oa20', 'Oa21', 'altitude', 'humidity', 'latitude', 'longitude', 'mask', 'quality_flags', 'satellite_azimuth_angle', 'satellite_zenith_angle', 'sea_level_pressure', 'solar_azimuth_angle', 'solar_zenith_angle', 'total_columnar_water_vapour', 'total_ozone']

    We can print the available datasets for the loaded scene.

    With the function load(), you can specify an individual band by name. If you then select the loaded band, you see the xarray.DataArray band object

    # load bands 
    scn.load(['humidity','total_ozone'])
    scn['humidity']
    Loading...

    Visualize data

    We can visualize the available datasets on a map.

    import matplotlib.pyplot as plt
    from pyresample.kd_tree import resample_nearest
    from pyresample.geometry import AreaDefinition
    
    #area definition
    area_id = 'worldeqc30km'
    description = 'World in 3km, platecarree'
    proj_id = 'eqc'
    projection = {'proj': 'eqc', 'ellps': 'WGS84'}
    width = 820
    height = 410
    area_extent = (-20037508.3428, -10018754.1714, 20037508.3428, 10018754.1714)
    area_def = AreaDefinition(area_id, description, proj_id, projection,
                              width, height, area_extent)
    
    #scene 
    lons, lats = scn["total_ozone"].area.get_lonlats()
    swath_def = pyresample.geometry.SwathDefinition(lons, lats)
    total_ozone = scn["total_ozone"].data.compute()
    result = resample_nearest(swath_def, total_ozone, area_def, radius_of_influence=20000, fill_value=None)
    
    #cartopy
    plt.rcParams['figure.figsize'] = [15, 15]
    crs = area_def.to_cartopy_crs()
    fig, ax = plt.subplots(subplot_kw=dict(projection=crs))
    coastlines = ax.coastlines()  
    ax.set_global()
    
    #plot
    img = plt.imshow(result, transform=crs, extent=crs.bounds, origin='upper')
    # Calculate (height_of_image / width_of_image)
    im_ratio = result.shape[0]/result.shape[1]
     
    # Plot vertical colorbar
    plt.colorbar(fraction=0.047*im_ratio)
    plt.show()
    <Figure size 1500x1500 with 2 Axes>